Structural analysis of semi-specific oligosaccharide recognition by a cellulose-binding protein of thermotoga maritima reveals adaptations for functional diversification of the oligopeptide periplasmic binding protein fold.

نویسندگان

  • Matthew J Cuneo
  • Lorena S Beese
  • Homme W Hellinga
چکیده

Periplasmic binding proteins (PBPs) constitute a protein superfamily that binds a wide variety of ligands. In prokaryotes, PBPs function as receptors for ATP-binding cassette or tripartite ATP-independent transporters and chemotaxis systems. In many instances, PBPs bind their cognate ligands with exquisite specificity, distinguishing, for example, between sugar epimers or structurally similar anions. By contrast, oligopeptide-binding proteins bind their ligands through interactions with the peptide backbone but do not distinguish between different side chains. The extremophile Thermotoga maritima possesses a remarkable array of carbohydrate-processing metabolic systems, including the hydrolysis of cellulosic polymers. Here, we present the crystal structure of a T. maritima cellobiose-binding protein (tm0031) that is homologous to oligopeptide-binding proteins. T. maritima cellobiose-binding protein binds a variety of lengths of beta(1-->4)-linked glucose oligomers, ranging from two rings (cellobiose) to five (cellopentaose). The structure reveals that binding is semi-specific. The disaccharide at the nonreducing end binds specifically; the other rings are located in a large solvent-filled groove, where the reducing end makes several contacts with the protein, thereby imposing an upper limit of the oligosaccharides that are recognized. Semi-specific recognition, in which a molecular class rather than individual species is selected, provides an efficient solution for the uptake of complex mixtures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story

Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design o...

متن کامل

Crystal structure of YjeQ from Thermotoga maritima contains a circularly permuted GTPase domain.

We have determined the crystal structure of the GDP complex of the YjeQ protein from Thermotoga maritima (TmYjeQ), a member of the YjeQ GTPase subfamaily. TmYjeQ, a homologue of Escherichia coli YjeQ, which is known to bind to the ribosome, is composed of three domains: an N-terminal oligonucleotide/oligosaccharide-binding fold domain, a central GTPase domain, and a C-terminal zinc-finger domai...

متن کامل

Biochemical characterization of PE_PGRS61 family protein of Mycobacterium tuberculosis H37Rv reveals the binding ability to fibronectin

Objective(s): The periodic binding of protein expressed by Mycobacterium tuberculosis H37Rv with the host cell receptor molecules i.e. fibronectin (Fn) is gaining significance because of its adhesive properties.  The genome sequencing of M. tuberculosis H37Rv revealed that the proline-glutamic (PE) proteins contain polymorphic GC-rich repetitive sequences (PGRS) which have clinical importance i...

متن کامل

Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima.

Members of the periplasmic binding protein superfamily are involved in the selective passage of ligands through bacterial cell membranes. The hyperthermophilic eubacterium Thermotoga maritima was found to encode a highly stable and specific periplasmic arginine-binding protein (TM0593). Following signal sequence removal and overexpression in Escherichia coli, TM0593 was purified by thermoprecip...

متن کامل

The Effect of 8 Weeks Resistance Training With Low Load and High Load on Testosterone, Insulin-like Growth Factor-1, Insulin-like Growth Factor Binding Protein-3 Levels, and Functional Adaptations in Older Women

Objectives The loss of muscle mass in older adults is attributed to the impaired ability of the skeletal muscle in response to anabolic stimuli and the increased activation of the proteolytic signaling pathway. With increasing age, plasma concentrations of circulating anabolic hormones and growth factors, e.g. testosterone, Insulin-like Growth Factor-1 (IGF-1) and Insulin-like Growth Factor Bin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 48  شماره 

صفحات  -

تاریخ انتشار 2009